Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine
نویسندگان
چکیده
Gasoline compression ignition (GCI) has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI), which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON). Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR), start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned) was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB) and stable combustion (coefficient of variance of indicated mean effective pressure <3%) were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense at low EGR conditions. Soot/temperature profiles indicated only the high-temperature combustion period, while cylinder pressure-based heat release rate showed a two-stage combustion phenomenon.
منابع مشابه
A Comprehensive Comparative Investigation of Compressed Natural Gas as an Alternative Fuel in a Bi-Fuel Spark Ignition Engine
Nowadays, increased attention has been focused on internal combustion engine fuels. Regarding environmental effects of internal combustion engines particularly as sources of pollution and depletion of fossil fuels, compressed natural gas has been introduced as an alternative to gasoline and diesel fuels in many applications. A high research octane number which allows combustion at higher co...
متن کاملNumerical Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using 3D-CFD Coupled with Chemical Kinetics
In this paper, a numerical study is performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode in a heavy-duty, single-cylinder diesel engine with gasoline and diesel fuels. In RCCI strategy in-cylinder fuel blending is used to develop fuel reactivity gradients in the combustion chamber that result in a ...
متن کاملReformer Gas Application in Combustion Onset Control of HCCI Engine
Homogenous charge compression ignition (HCCI) combustion is spontaneous multi-site combustion of a nominally premixed air/fuel mixture that exhibits high rate of pressure rise and short combustion duration. To avoid excessive pressure rise rate and knocking, HCCI engines are fueled with highly diluted mixture using a combination of excess air and/or EGR. HCCI combustion is attractive due to ...
متن کاملEffect of Initial Temperature and EGR on Combustion and Performance Characteristics of Homogenous Charge Compression Ignition Engine Fueled with Dimethyl Ether
Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...
متن کاملAutoignition Characterization of Primary Reference Fuels and n- Heptane/n-Butanol mixtures in a Constant Volume Combustion Device and Homogeneous Charge Compression Ignition Engine
Premixed or partially premixed compression ignition modes, such as homogeneous charge compression ignition (HCCI), have been a particular focus among researchers because of their potential to deliver enhanced fuel efficiency and meet exhaust emissions mandates without the addition of costly after-treatment technologies as currently required with traditional spark ignition (SI) and direct inject...
متن کامل